Digital Cinema Concepts HD979 for sale: 1080p production format
1080p50/p60 production format will require a whole new range of studio equipment including cameras, storage and editing systems, and contribution links (such as Dual-link HD-SDI and 3G-SDI) as it has doubled the data rate of current 50 or 60 fields interlaced 1920x1080 from 1.485 Gbit/s to nominally 3 Gbit/s using uncompressed RGB encoding. Most current revisions of SMPTE 372M, SMPTE 424M and EBU Tech 3299 require YCbCr color space and 4:2:2 chroma subsampling for transmitting 1080p50 (nominally 2.08 Gbit/s) and 1080p60 signal.
Recent studies show that for digital broadcasts compressed with H.264/AVC, transmission bandwidth savings of interlaced video over fully progressive video are minimal even when using twice the frame rate, i.e., 1080p50 signal (50 progressive frames per second) actually produces the same bit rate as 1080i50 signal (25 interlaced frames or 50 sub-fields per second).
Consumer televisions and projectors
As of 2012, most consumer televisions being sold provide 1080p inputs, mainly via HDMI, and support full high-definition resolutions. 1080p resolution is available in all types of television, including plasma, LCD, DLP front and rear projection and LCD projection.
For displaying film-based 1080i60 signals, a scheme called 3:2 pulldown reversal (reverse telecine) is beginning to appear in some newer 1080p displays, which can produce a true 1080p quality image from film-based 1080i60 programs. Similarly, 25fps content broadcast at 1080i50 may be deinterlaced to 1080p content with no loss of quality or resolution.Digital Cinema Concepts review
Digital Cinema Concepts sell: Interlaced video broadcasting
The European Broadcasting Union has argued against interlaced video in production and broadcasting. They recommend 720p 50 fps (frames per second) for the current production format—and are working with the industry to introduce 1080p50 as a future-proof production standard. 1080p 50 offers higher vertical resolution, better quality at lower bitrates, and easier conversion to other formats, such as 720p50 and 1080i50. The main argument is that no matter how complex the deinterlacing algorithm may be, the artifacts in the interlaced signal cannot be completely eliminated because some information is lost between frames.
Despite arguments against it, television standards organizations continue to support interlacing. It is still included in digital video transmission formats such as DV, DVB, and ATSC. New video compression standards in development, like High Efficiency Video Coding, do not support interlaced coding tools and target high-definition progressive video such as ultra high definition television.
Digital Cinema Concepts HD979
Contrast ratio measure
There is no official, standardized way to measure contrast ratio for a system or its parts, nor is there a standard for defining "Contrast Ratio" that is accepted by any standards organization so ratings provided by different manufacturers of display devices are not necessarily comparable to each other due to differences in method of measurement, operation, and unstated variables. Manufacturers have traditionally favored measurement methods that isolate the device from the system, whereas other designers have more often taken the effect of the room into account. An ideal room would absorb all the light reflecting from a projection screen or emitted by a CRT, and the only light seen in the room would come from the display device. With such a room, the contrast ratio of the image would be the same as the contrast ratio of the device. Real rooms reflect some of the light back to the displayed image, lowering the contrast ratio seen in the image. Digital Cinema Concepts
Digital Cinema Concepts:The ANSI contrast
The ANSI contrast - the measurement is done with a checker board patterned test image where the black and white luminosity values are measured simultaneously. This is a more realistic measure of system capability, but includes the potential of including the effects of the room into the measurement, if the test is not performed in a room that is close to ideal.
It is useful to note that the full on/full off method effectively measures the dynamic contrast ratio of a display, while the ANSI contrast measures the static contrast ratio.